Journal of Computational Physics 228 (2009) 3708-3741

journal homepage: www.elsevier.com/locate/jcp

Journal of Computational Physics

Contents lists available at ScienceDirect

A composite grid solver for conjugate heat transfer in

fluid-structure systems

William D. Henshaw **, Kyle K. Chand?

4 Centre for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551, United States
bScience and Technology Computing Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 21 October 2008

Received in revised form 26 January 2009
Accepted 3 February 2009

Available online 20 February 2009

Keywords:

Conjugate heat transfer
Overlapping grids
Incompressible flow
Numerical methods
Multi-domain solvers

We describe a numerical method for modeling temperature-dependent fluid flow coupled
to heat transfer in solids. This approach to conjugate heat transfer can be used to compute
transient and steady state solutions to a wide range of fluid-solid systems in complex two-
and three-dimensional geometry. Fluids are modeled with the temperature-dependent
incompressible Navier-Stokes equations using the Boussinesq approximation. Solids with
heat transfer are modeled with the heat equation. Appropriate interface equations are
applied to couple the solutions across different domains. The computational region is
divided into a number of sub-domains corresponding to fluid domains and solid domains.
There may be multiple fluid domains and multiple solid domains. Each fluid or solid sub-
domain is discretized with an overlapping grid. The entire region is associated with a com-
posite grid which is the union of the overlapping grids for the sub-domains. A different
physics solver (fluid solver or solid solver) is associated with each sub-domain. A higher-
level multi-domain solver manages the entire solution process.

We propose and analyze some centered discrete approximations to the interface equa-
tions that have some desirable stability properties. The coupled interface equations may
be solved directly when using explicit time-stepping methods in the sub-domains, result-
ing in a strongly coupled approach. The stability of the interface treatment in this case is
independent of the relative sizes of the material properties in the two domains with the
time-step only depending on the usual von Neumann conditions for each sub-domain.
For implicit time-stepping methods we solve the interface equations in a weakly coupled
fashion to avoid forming a coupled implicit system across all sub-domains. The conver-
gence of this approach does depend on the relative sizes of the thermal conductivities
and diffusivities. We analyze different iteration strategies for solving these implicit equa-
tions including the use of mixed (Robin) approximations at the interface.

Numerical results are presented to illustrate the method. The accuracy of the technique
is verified using the method of analytic solutions and by computing the solution to some
heat exchanger problems where the exact solution is known. The technique is also applied
to the modeling of an inertial-confinement-fusion hohlraum target and the flow of coolant
past an hexagonal array of heated fuel rods. The multi-domain solver runs in parallel on
distributed memory computers and some parallel results are provided.
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1. Introduction

There are many interesting scientific and engineering problems that involve the coupling of fluid flow to heat transfer in
solids. These include modeling of heat exchangers, cooling of turbine blades in jet engines, nuclear reactors and cooling of
computer components to name a few. This manuscript outlines a first step towards the development of a framework and
numerical approximations for simulation of some of these important applications. We describe a flexible approach for mod-
eling heat transfer in fluid-solid systems based on the use of composite overlapping grids. The approach uses different phys-
ics solvers in the different fluid and solid domains. The solutions are coupled at the fluid-solid interfaces using the
continuity of temperature and heat flux. There can be any number of different fluid or solid domains and any number of
different physics solvers. The fluids are modeled using the incompressible Navier-Stokes equations with the Boussinesq
approximation. The solids are modeled with the heat equation. Each fluid or solid domain is discretized with an overlapping
grid. Curvilinear boundary fitted grids are used at boundaries and interfaces. The entire domain is represented with a com-
posite grid that holds the union of the sub-domain overlapping grids. The primary goals of the work presented here are to
develop the multi-domain numerical method and computational framework, to use mathematical and numerical analysis to
understand properties of the coupled approach, and to verify the accuracy of the technique. Simulation of many realistic
problems will require extensions of the present work, such as the addition of appropriate turbulence models, but this is left
to future work.

The multi-domain solution of all fluid and solid domains is advanced in time in a domain-split, weakly coupled, manner.
During each composite time-step, the solution in each sub-domain is advanced with an explicit or implicit predictor-correc-
tor time-stepping algorithm using the physics solver for that domain. The interface equations are updated after the predictor
and corrector steps. When explicit time-stepping is used, the interface equations are solved as a separate set of coupled
equations, resulting in an effectively strongly coupled algorithm. We propose a non-standard centered interface approxima-
tion. An analysis shows that with the centered interface approximation, the stability of the scheme is independent of the
relative sizes of thermal conductivities and thermal diffusivities in the adjacent domains. The time-step for the overall
scheme is no worse than the time-step determined for the individual sub-domains. This is in contrast to the more commonly
used approach [1]. When implicit time-stepping algorithms are used in the sub-domains, the interface equations are solved
in a segregated fashion using a Dirichlet condition on one side and a Neumann condition on the opposite side of the interface.
In this case it may be necessary to iterate and use additional corrector steps in order to satisfy the coupled interface condi-
tions to the desired tolerance. We describe and analyze an iteration strategy for solving these coupled implicit systems. The
iteration converges rapidly when a certain ratio involving the thermal conductivities and diffusivities of adjacent domains is
small (or large). The convergence of the iteration can be accelerated using a relaxation parameter. We also analyze the use of
a mixed (Robin) interface condition instead of the standard Dirichlet-Neumann approach and show that it has attractive
convergence properties especially for the situation when the Dirichlet-Neumann approach has difficulties.

Our multi-domain approach is based on the use of overlapping grids. This method, as discussed in Chesshire and Henshaw
[2], allows complex domains to be represented with smooth structured grids that can be aligned with the boundaries. Com-
pared to a multi-block grid, it is easier to construct an overlapping grid for a complex domain since the component grids are
not constrained to match exactly. The use of smooth grids is important for obtaining accurate answers especially when using
high-order accurate methods. Boundary fitted grids are important for accurate implementation of boundary conditions and
for representing boundary layer phenomena. The use of structured grids is important for performance and low memory use.
Moreover, since the majority of an overlapping grid often consists of Cartesian grid cells, the speed and low memory require-
ments inherent with Cartesian grids can be substantially retained. The overlapping grid technique is especially attractive for
handling problems with moving or deforming boundaries since the grids remain smooth and can be rapidly generated.
Although the usual interpolation used at overlapping grid interfaces is not conservative, conservative interpolation for over-
lapping grids can be constructed [3]. However, in our experience and in the work of many others, the simpler non-conser-
vative interpolation has worked well, even for very difficult problems involving strong shocks and detonations [4,5].

Overlapping grids have been used to solve a wide class of problems efficiently and accurately. The first use of overlapping
grids (called composite grids at the time) appeared in papers by Volkov [6,7], who considered approximations to Poisson’s
equation in regions with corners. Other pioneering work includes that of Starius [8-10], Kreiss [11] and Steger et al. [12]
who referred to the approach as Chimera grids. Since this early work, the overlapping grid technique has been used success-
fully to solve a wide variety of problems in high-speed reactive flow [4,5,13,14], reactive and non-reactive multi-material
flow [15,16], combustion [17], aerodynamics [18-24], blood flow [25], electromagnetics [26], flows around ships [27], vis-
co-elastic flows [28] and flows with deforming boundaries [29-31], among others. We also note that a hybrid scheme using
overlapping grids in fluid regions and unstructured grids in solid regions has been applied to some conjugate heat transfer
problems [32]. However, to our knowledge, the present work is the first application of composite grids to conjugate heat
transfer problems where both fluids and solids are solved using overlapping grids.

There are a variety of strategies that have been used to solve conjugate heat transfer problems. Finite difference, finite-
volume, finite-element, boundary-element and spectral-element approximations have all been applied [33-39]. The differ-
ent multi-domain strategies are distinguished by the degree to which domains are coupled. In the strongly coupled ap-
proach, a single large monolithic system is defined for the entire composite domain. This approach is often the most
robust. A common technique for conjugate heat transfer problems is to solve the fluid equations for the velocities and tem-
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perature in the entire domain, but force the velocities to be zero or small in the solid regions [33,34]. In the weakly coupled
approach, separate solution algorithms are used in different domains with solutions coupled at the interface [40]. This ap-
proach has some practical advantages in terms of re-use of existing physics codes without the need to develop a new mono-
lithic approximation. There are yet other approaches that lie somewhere between the strongly coupled and weakly coupled.
Some practitioners, for example, solve for a single temperature equation across all domains while having separate fluid solv-
ers in different domains [35,36].

The stability of the segregated interface approach for coupled heat equations has been studied by Giles [1]. He analyzed a
particular discretization and showed that for stability reasons the fluid domain should generally be given the Dirichlet con-
dition for continuity of the temperature and the solid domain the Neumann condition for continuity of the heat flux. Giles
also showed that the time-step restriction of the coupled problem was sometimes smaller than those from the sub-domains
and depended on the relative sizes of the heat capacities and grid spacings in the sub-domains. Roe et al. [40] considered a
different discrete approximation to the interface equations that improved the stability characteristics. There has also been
much work on solution strategies for domain-decomposition problems and many of these ideas are applicable to conjugate
heat transfer problems, see for example [41-43].

An outline of the paper now follows. In Section 2, we define the problem to be solved in terms of the partial differential
equations (PDEs), boundary conditions and interface conditions. In Section 3, we give a brief description of our discretization
approach and describe the coupled interface (CI) and segregated interface (SI) approaches. Our approach for multi-domain
time-stepping is presented in Section 4. Section 5 provides a stability analysis of the coupled interface approximation for a
model problem. In Section 6, we analyze the SI technique using Dirichlet-Neumann interface conditions and derive the con-
vergence characteristics of the iteration. We also analyze a mixed interface approximation and present computed conver-
gence rates for various cases. In Section 7, we present numerical results that show the accuracy of the method and its
use applied to some interesting applications. Some parallel scaling results are also provided. Conclusions are given in the
final section.

The computations in this paper were performed with the composite grid multi-physics solver cgmp together with the
incompressible Navier-Stokes solver cgins and the advection-diffusion (and heat equation) solver cgad. These programs
are part of the CG suite of PDE solvers and are built upon the Overture framework. These programs are all freely available
at http://www.lInl.gov/casc/Overture.

Fig. 1. Top left : a domain Q with two fluid sub-domains Q;, Q, and three solid sub-domains Q3, Q4 and Qs. Top right: the composite G consists of five
overlapping grids, one for each domain. Bottom left: a computed conjugate heat transfer solution showing the temperature. Bottom right: the streamlines in
the fluid domains and the temperature in the solid domains.
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2. Problem specification and model equations

We are interested in solving a conjugate heat transfer problem in a domain Q which consists of a set of Ny sub-domains
that represent fluid and solid regions (see Fig. 1),

Q=Uy" Q. (1)

The sub-domains are assumed to be non-overlapping. A single sub-domain, however, may be multiply connected. A collec-
tion of non-overlapping regions may be represented, for example, with a single sub-domain (as Q5 in Fig. 1). We define the
sub-domains in this way since we associate a separate physics solver with each sub-domain. A single heat equation solver,
for example, could be used on a multiply connected domain. This is described further in Section 3.

The solution in a fluid domain, Qf, with boundary 9¢, is governed by the incompressible Navier-Stokes (INS) equations.
The effects of temperature and buoyancy are modeled with the Boussinesq approximation. The equations are given by

U+ (u-Viu+Vp—vAu+og(T —Ter) —f=0, t>0, X @,

Ap+Vu:Vu+o(g-V)T-V-f=0, t>0, xe &, 2)

T[+(u.V)T-%v.(zcvr)—fT:o, £>0, XxeQ

with initial conditions and boundary conditions,
(u(x,0),T(x,0)) = (w(x),Ty(x)), t=0, X €0, 5
Bf(u,T) =0, t>0, X €oQ.

Here u = u(x,t) is the velocity, p the kinematic pressure, T the temperature, v = p/p the kinematic viscosity, K the thermal
conductivity, p the density, C the specific heat, o the coefficient of thermal expansion and T, is the reference temperature
for which there are no buoyancy forces. f and fr are forcing functions. We use a pressure-velocity formulation for these equa-
tions, solved with a split-step method. A second-order accurate and fourth-order accurate scheme are available, see [44-46]
for more details. Boundary conditions for these equations are discussed in Section 3.1. We have also developed efficient mul-
tigrid algorithms for overlapping grids [47] that can be used with the incompressible flow solver, although the multigrid sol-
ver is not used in the present work.
Heat conduction in a solid domain s is modeled by the heat equation,

Tt_%V(ICVT)—f:O, t>0, xe,

T(x,0) = T)(x), t=0, xeQ, (4)
B5(T) =0, t>0, x €00

At the interface Z = 99, N 9Q; between a fluid region and a solid region the matching conditions are the continuity of the
temperature and the continuity of the normal component of the heat flux
[T; =0, (5)
[Kn-VT]; =0. (6)
Here n is the normal to the interface 7 and [-], denotes the jump across the interface. The interface conditions (5) and (6) also
apply at the interface between two fluid regions or between two solid regions. Higher-order accurate methods may require
higher-order matching conditions. These are derived by taking time derivatives of basic jump conditions (5) and (6) and

using the governing equation to replace time derivatives with space derivatives. Assuming for simplicity that the coefficients
K, p and C are constant within a sub-domain, the high-order jump conditions are

g9-1 o
(DA)'T + Z(DA)"”a’J} =0, ¢=0,1,2,..., (7)
Jj=0 T
q-1-k
K(DA)'n-VT+K Y (DAY 'on - Vf} =0, ¢=0,1,2,..., (8)
j=0 T

where the thermal diffusivity D is defined as
D =K/(pC). 9)
In this paper we only present results for second-order accurate approximations although we will use condition (7) with g = 1

for the coupled interface approach described in Section 3.2.

3. Solution approach and discretization

We solve the multi-domain problem using a weakly coupled approach (although when explicit time-stepping is used the
approach is effectively strongly coupled). We associate a separate physics solver with each fluid or solid sub-domain of the
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multi-domain problem. We use the composite grid incompressible Navier-Stokes code cgins in a fluid domain and the advec-
tion-diffusion code cgad in a solid domain. There may be multiple instances of cgins and cgad. The composite grid multi-
physics solver cgmp manages the multi-domain solution process and coordinates the transfer of information at the inter-
faces. The multi-domain time-stepping algorithm is discussed in more detail in Section 4.

The entire domain of interest, €, is discretized using a composite overlapping grid, G. Each fluid or solid sub-domain will
itself be discretized with an overlapping grid, G;, with the global overlapping grid G containing all the sub-overlapping grids,

G=Uy* 0. (10)
The overlapping grid G consists of a set of NVgiq component grids G, i.e.,
g:{Gg}: g:172>~-->/\/grid-

The component grids cover Q. Similarly, the overlapping grid, G4, for a sub-domain, will consist of a set of overlapping com-
ponent grids which are a sub-set of the grids in G.

Each component grid is a logically rectangular, curvilinear grid defined by a smooth mapping C, from parameter space r
(e.g. the unit-cube in three-dimensions) to physical space x:

x:cg(r)7 r€[07”37 XGR3-

The mapping is used to define the metric derivatives 9x/dr and the grid points at any desired resolution. Variables defined on
a component grid, such as the coordinates of the grid points, are stored in rectangular arrays. For example, grid vertices are
represented as the array

x§ . grid vertices, 1= (i1,iz,13), ik =0,...,Ny, k=1,2,3,

where N, is the number of grid cells in k-coordinate direction. We note that grid vertex information and other mapping infor-
mation are not stored for Cartesian grids. This usually results in a considerable savings in memory use since most of the grid
points belong to Cartesian grids for a typical overlapping grid.

@0 interpolation
O unused
A A ghost point

N

physical boundary

9000000000
™
=
Il
N (—1 \
Gy

=)
Il
&

i1 =0 i1 =Ny

Fig. 2. The top view shows an overlapping grid consisting of two structured curvilinear component grids. The bottom views show the component grids in
the unit square parameter space. Grid points are classified as discretization points, interpolation points or unused points. Ghost points are used to apply
boundary conditions.
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Fig. 2 shows a simple overlapping grid consisting of two component grids, an annular boundary fitted grid and a background
Cartesian grid. The top view shows the overlapping grid while the bottom view shows each grid in parameter space. In this exam-
ple the annular grid cuts a hole in the Cartesian grid so that the latter grid has a number of unused points which are marked as
open circles. The other points on the component grids are classified as either discretization points (where the PDE or boundary
conditions are discretized) or interpolation points. This information is supplied by the overlapping grid generator Ogen [48] and
is held in an integer mask array. In addition, each boundary face of each component grid is classified as either a physical boundary
(where boundary conditions are to be implemented), a periodic boundary or an interpolation boundary. Typically, one or more
layers of ghost points are created for each component grid to aid in the application of boundary conditions.

The PDE's that define the evolution of the fluid and solid are discretized with a finite difference or finite-volume approxima-
tion with all variables defined at the nodes. For example, consider approximating the generalized Laplace operator, L defined by

Lw=V-(aVw), (11)
where a = a(x) is a real valued coefficient. A straight-forward approach to discretize L on a curvilinear grid is to use the map-

ping method, as follows. Using the chain rule, the operator L can be written in general curvilinear coordinates in ny space-
dimensions as

o Ja, Jd ary rj ow  or (0 [or da ar;) dw
Lw— ] J J 12
W ; ,:21 ; Ox; OX; or;ory + OXi {aark (8x> tore ory 6x,} orj’ (12)

The metric terms 9dr;/dx; are computed from the mapping that defines the grid and are thus assumed to be known. The deriv-
atives with respect to the parameter space coordinates r; can be approximated with central difference approximations. The
operator L can also be written in conservation form, or self-adjoint form, in general curvilinear coordinates as

Mg Ng Mg Ng

wep 2D (W) A =ary Y S 13)
j=1 k=1 1] k p=1 v= X Xy

where | denotes the determinant of the Jacobian matrix [0x;/0ry]. A careful discretization of this last form of the operator

leads to symmetric and compact discrete approximations of any order of accuracy [26]. These approximations are general-

ized finite-volume approximations. See [44] for more details on discretizing the incompressible Navier-Stokes equations on

curvilinear grids.

3.1. Boundary conditions

The boundary conditions we use for the incompressible Navier-Stokes equations and the heat equation are given in Figs. 3
and 4, respectively. We consider inflow boundaries, outflow boundaries, no-slip walls and slip-walls. The conditions imposed
on each boundary are divided into those labeled physical which come from the analytic definition of a well-posed initial-
boundary-value problem and those labeled numerical which are extra conditions needed for the discretized problem in order
to define an accurate and stable approximation. Numerical boundary conditions typically determine ghost point values of the
discrete solution. Note that there is no explicit physical boundary condition for the pressure at walls or inflow. The boundary
condition V - u = 0, which takes the place of an explicit condition on the pressure, ensures that the solution to the INS Egs. (2)
and (3) satisfies V - u = 0 everywhere. The numerical boundary condition for the pressure at walls or inflow is

Ph=Pr(u,T)=-n-(WxVxu+ou+(u-Viu+ogl), (14)

and is derived from the normal component of the momentum equations. This numerical boundary condition is used when
solving the Poisson equation for the pressure. See [49,46] for a discussion of this boundary condition. The boundary condi-

INS no-slip wall or inflow INS slip wall
hysical u=—_gu hysical n-u=g,
P & P g INS outflow
V-u=0 V-u=0
physical | cp, +dp =g,
aT+bT, =gr alT+bT, =gr
numerical | extrapolate u
numerical Pn = Pp(u,T) numerical Pn = Pp(u,T)
extrapolate T'
extrapolate 7, - u extrapolate 7, - u
extrapolate T if b =0 extrapolate T if b =0

Fig. 3. Boundary conditions for the incompressible Navier-Stokes equations. The outward normal at the boundary is denoted by n, tangent vectors at the
boundary are 7, it = 1,2 and P is defined by Eq. (14). The functions g, (X, t), g,(X,t),gr(X,t) and g,(x,t) are given forcing functions while a,b, c and d are
non-negative constants witha+b >0and c+d > 0.
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Heat Equation wall

physical aT+bT, =gr

numerical | extrapolate T if b =0

Fig. 4. Boundary conditions for the heat equation, where g;(x, t) is a given forcing function and a and b are non-negative constants with a+b > 0.

tion on the temperature can be Dirichlet, T = g;, Neumann, T,, = g, or a mixed condition aT, + bT = g;. For further details on
the discretization of the boundary conditions, the reader is referred to Henshaw [44], Henshaw and Petersson [46] and Hen-
shaw et al. [45].

3.2. Explicit time-stepping and coupled interface equations (CI)

We consider two approaches for solving the interface equations. In the first approach the interface equations are solved as
a coupled system of equations using a centered approximation. This approach is generally used when the interior equations
are advanced with explicit time-stepping and requires no iteration on the interface values. The CI approach could be used
directly with implicit time-stepping but would require the formation of a coupled implicit system of equations for the tem-
perature across all domains. For a second-order accurate approximation we use the two interface equations (6) and (7) with
q=1,
Kn-VT]; =0,
[DAT +f]; = 0. (15)

These two conditions will determine the discrete solution values on the first ghost line of the two domains, one ghost line for
each domain. Here we have assumed that u = 0 on the interface and that the coefficients K, p and C are constant within each
sub-domain. This approximation differs from those usually found in the literature through the use of Eq. (15). For the case of
an interface between two solid regions, for example, the time-continuous space-discrete approximation is given by

0tTmi = DmnAnTmi + finXmi, t), foric G‘,fw and sub-domains m =1, 2, (16)
Kimg- ViTii = Ka(—nyj) - ViTyj, foriez}? je1y', (17)
DiAT i+ fi(Xi, t) = DoAT j + o (Xo junt), forieZ}? jezp'. (18)

Here T,,; ~ T(Xni, t) denotes the discrete approximation to the temperature on a grid G,, of sub-domain Q,, with grid points
Xni and interface normals ny,;. A, and V,, denote discrete approximations to A and V, respectively. These operators depend
on the grid Gf,, they are discretized on, but this should be clear from context. Note that we use —n,; since the discrete nor-
mals are defined as outward normals. Equations are also needed at physical boundaries, interpolation points and periodic
boundaries but these are left out in order to focus on the interface treatment. The interior equation (16) is applied at interior
discretization points, boundary points and interface points, the set of these grid points being denoted by G;. The set of points
on component grid G, that lie on the interface with grid G, are denoted by Z!?. We have assumed that the grid points align
on the interface so that the sets Z)? and Z}}” define the same set of physical points. This assumption is used throughout this
paper. The more general case of non-matching grid points on the interface is left to future work. The interface equations (17)
and (18) are discrete approximations that are centered on the interface and will be used to determine the values on the ghost
points that are adjacent to the interface points. Use of centered schemes for boundaries generally results in more accurate
and more stable approximations compared to using one-sided approximations based on extrapolation.

We now illustrate how the discrete solution is advanced in time using the forward-Euler method. The discrete solution,
Thi = T(Xms, t"), with t" = nAt, is first advanced at all interior and interface points using Eq. (16),

Thi = Thy + ADuA T + fn (X, 1), forie Gh, m=1,2. (19)
Eqgs. (17) and (18) are then used to determine the ghost point values adjacent to the interface at the new time level,

K- VT = Ko (—my 5) - VTS, foriez;? je1', (20)

DiIAT + (X, ) = DM TS + fo(%o 3, t™), forie 7)?, je T} (21)

In practice we often use a predictor-corrector time-stepping method in which case the interface equations are applied after
the predictor and corrector steps. Application of Egs. (19)-(21) should ensure that T;’jl = T;fjl (to round-off error) for points
on the interface. On non-orthogonal grids, condition (21) will couple the solutions on the ghost points due to cross-derivative
terms in the approximation to Ay. To avoid solving a coupled system of equations along the interface we use the current best
guess values for ghost points values when they are needed by the cross-derivatives (using extrapolation in space for the
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predictor step). We then enforce the continuity of temperature directly after each time-step using a weighted average of the

computed interface values, following the approximation developed by Patankar [33],

KT + KT
K1+ K, ’

where 7"’;}1 and Tgfj‘ are the values determined from Eqs. (19)-(21). The stability and accuracy of the approximations (16)-
(18) are studied in Section 5. Unlike the segregated approach, discussed in the next section, the stability of the coupled ap-
proach does not depend on the relative sizes of X and D in the two domains.

Tﬁ] = Tgfjl = foric Il'z, je Ii’l, (22)

3.3. Implicit time-stepping and segregated interface equations (SI)

The second approach used to solve the interface equations is based on segregating the interface equations and applying
one of the interface equations as a boundary condition for one domain and the other as the boundary condition for the sec-
ond domain. We generally use this approach when one or both of the domains uses implicit time-stepping. A segregated
approach is commonly used in the literature with both explicit and implicit time-stepping. Some care is required in applying
the segregated method since the stability of the method depends on which interface equation is associated with which do-
main and on the relative sizes of K and D in the two domains as discussed in Section 6.

In the segregated approach the solution on each sub-domain is advanced using one of the interface conditions as a bound-
ary condition. For example, the solution on one domain may be advanced for one time-step using an implicit method with a
Dirichlet condition that sets the temperature on the interface

T} = YT TY,,. ), forie Gl (23)
T =Ts foriez,? jezp' (24)

Here T; ; is some guess at the temperature on the interface and £' denotes an implicit time-stepping operator. Note that we
apply the interior equation on the interface in addition to the Dirichlet condition and this extra equation determines the
solution on the ghost points:

LT T, ) =Ty, forieZy? jey’. (25)

The solution on the adjacent domain is advanced using a Neumann boundary condition based on the continuity of heat flux
as an interface condition

o = LT T ), for i e G, (26)
Ka(—Ma5)- VT3 = Kimyi- Vi Ty, forie )%, je 7p', 27)

where some guess for the heat flux from domain one is used. In general we will iterate these equations some number of
times using successively better values for ny; - V,,T;; and T, ;. If we iterate to convergence, the results will satisfy the same
centered interface conditions (20) and (21) that are satisfied in the coupled approach.

In Section 6, we analyze this Dirichlet-Neumann segregated approach and discuss iteration strategies. We also consider a
generalization that uses a mixed (Robin) approximation on both sides of the interface.

4. The multi-domain time-stepping algorithm

In this section we describe our approach for time-stepping a multi-domain problem. We assume that we have a separate
physics solver for each domain. For the purposes of this paper the domain solver will either solve the INS equations or the
heat equation. There may be multiple INS solvers and multiple heat equation solvers. The different domain solvers are cou-
pled through the interface conditions (5) and (6). These interface equations are solved with a coupled (CI) or segregated (SI)
approach as described in Sections 3.2 and 3.3, respectively. Each domain solver is assumed to time-step its equations with an
explicit or implicit time-stepping technique such as forward-Euler, backward-Euler, or an (implicit/explicit) predictor-cor-
rector. To be more concrete we suppose that each domain solver uses a time-stepping approach that is of the form of the
following generic implicit predictor-corrector algorithm given by

L,vO =f,(u",u"! ..) (predictor),
Lov® =f . (v*® VY u" ..)) (corrector, k=1,2,...,n.),
un+l — V<nf).
Here u" is the solution at time t", v are intermediate solution values, and L, and L. denote possibly implicit operators that

are solved at the predictor and corrector steps, respectively. When we solve the inter